THE CHAIN RULE

Math 130 - Essentials of Calculus

15 October 2019

1/5

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

THEOREM (THE CHAIN RULE)

If g is differentiable at x and f is differentiable at g(x), then the composite function f(g(x)) is differentiable at x and is given by

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x).$$

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

THEOREM (THE CHAIN RULE)

If g is differentiable at x and f is differentiable at g(x), then the composite function f(g(x)) is differentiable at x and is given by

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x).$$

Using Leibniz notation with y = f(u) and u = g(x), the chain rule becomes

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

•
$$f(x) = \sqrt{x^2 + 4}$$

• $g(x) = \sqrt{4 + 3x}$

EXAMPLE

$$f(x) = \sqrt{x^2 + 4}$$

•
$$f(x) = \sqrt{x^2 + 4}$$

• $g(x) = \sqrt{4 + 3x}$
• $f(t) = e^{x^2}$

$$f(t) = e^{x^2}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

$$g(x) = \sqrt{4+3x}$$

3
$$f(t) = e^{x^2}$$

3
$$f(t) = e^{x^2}$$

4 $k(x) = e^{\sqrt{x}}$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

$$f(t) = e^{x^2}$$

3
$$f(t) = e^{x^2}$$

4 $k(x) = e^{\sqrt{x}}$

$$f(z) = \sqrt{e^z}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

6
$$f(z) = \sqrt{e^z}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

②
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

6
$$f(z) = \sqrt{e^z}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

$$g(x) = (2x^4 - 8x^2)^7$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

$$f(z) = \sqrt{e^z}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

$$g(x) = (2x^4 - 8x^2)^7$$

$$y(t) = \frac{1}{(t^4 + 1)^3}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

$$f(z) = \sqrt{e^z}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

$$g(x) = (2x^4 - 8x^2)^7$$

$$y(t) = \frac{1}{(t^4 + 1)^3}$$

$$k(x) = e^{\sqrt{t^2 + 2}}$$

$$k(x) = e^{\sqrt{t^2+2t}}$$

EXAMPLE

•
$$f(x) = \sqrt{x^2 + 4}$$

2
$$g(x) = \sqrt{4 + 3x}$$

3
$$f(t) = e^{x^2}$$

$$k(x) = e^{\sqrt{x}}$$

$$(z) = \sqrt{e^z}$$

$$q(x) = (1+4x)^5(3+x-x^2)^8$$

$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

$$g(x) = (2x^4 - 8x^2)^7$$

$$y(t) = \frac{1}{(t^4 + 1)^3}$$

$$\bullet k(x) = e^{\sqrt{t^2+2}}$$

$$y = \frac{r}{\sqrt{r^2 + 1}}$$

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \ne 1$?

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \ne 1$? Recall the property of logarithms that says

$$ln(e^x) = x$$
.

Using this, we can rewrite $b = ln(e^b)$ so that

$$b^{x}=(e^{\ln(b)})^{x}=e^{x\ln b}.$$

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \ne 1$? Recall the property of logarithms that says

$$ln(e^x) = x$$
.

Using this, we can rewrite $b = ln(e^b)$ so that

$$b^{x}=(e^{\ln(b)})^{x}=e^{x\ln b}.$$

Then, using the chain rule, we find that

$$\frac{d}{dx}[b^x] = \frac{d}{dx}[e^{x \ln b}] = e^{x \ln b} \ln b = b^x \ln b.$$

EXAMPLE

Find the derivative of the following functions

$$f(x) = 10^x$$

$$g(t) = 2^{3t}$$

THE CHAIN RULE WITH A TABLE

EXAMPLE

Here is a table of values for f, g, f', and g'.

X	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

Find the following values

• If
$$h(x) = f(g(x))$$
, find $h'(1)$.

THE CHAIN RULE WITH A TABLE

EXAMPLE

Here is a table of values for f, g, f', and g'.

X	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

Find the following values

- If h(x) = f(g(x)), find h'(1).
- ② If H(x) = g(f(x)), find H'(1).
- **3** If F(x) = f(f(x)), find F'(2).
- **1** If G(x) = g(g(x)), find G'(3).